Solve (y4x1)2dxdy=0?

I need to find a general solution to this ODE: (y4x1)2dxdy=0

1 Answer
Jan 18, 2018

y=4Ce4x+1+4x1

Explanation:

Given: (y4x1)2dxdy=0

dydx=(y4x1)2

Let u=y4x, then dudx=dydx4

dudx+4=(u1)2

dudx=u22u3

The equation is separable:

duu22u3=dx

duu22u3=dx

I used WolframAlpha for the integration of the left side:

ln((3uu+1)14)=x+C

3uu+1=Ce4x

1+4u+1=Ce4x

4u+1=Ce4x+1

u+1=4Ce4x+1

y=4Ce4x+1+4x1