Summation of series(method of differences),When we use ∑f(r)-f(r+1),how can we know it is f(1)-f(n+1), but not f(n)-f(1+1)? Also, how can we know it is f(n+1)-f(1) but not f(1+1)-f(n) when we use ∑f(r+1)-f(r)?

2 Answers
Jul 18, 2017

sum_(r=1)^n f(r)-f(r+1) = f(1)-f(n+1)

sum_(r=1)^n f(r+1)-f(r) = f(n+1) -f(1)

Explanation:

Write out the terms and see what happens:

Consider:

S_1 = sum_(r=1)^n f(r)-f(r+1)

" " = {f(1)-f(2)} +
" " {f(2)-f(3)} +
" " {f(3)-f(4)} +
" " {f(4)-f(5)} + ... +

" " {f(n-1)-f(n)} +
" " {f(n)-f(n+1)}

" " = {f(1)-cancel(color(purple)f(2))} +
" " {cancel(color(purple)f(2))-cancel(color(red)f(3))} +
" " {cancel(color(red)f(3))-cancel(color(green)f(4))} +
" " {cancel(color(green)f(4))-cancel(f(5))} + ... +

" " {cancel(f(n-1))-cancel(color(blue)f(n))} +
" " {cancel(color(blue)f(n))-f(n+1)}

And as shown almost all terms vanish, leaving:

S_1 = f(1)-f(n+1)

Whereas with:

S_2 = sum_(r=1)^n f(r+1)-f(r)

" " = {f(2)-f(1)} +
" " {f(3)-f(2)} +
" " {f(4)-f(3)} +
" " {f(5)-f(4)} + ... +

" " {f(n)-f(n-1)} +
" " {f(n+1)-f(n)}

" " = {cancel(color(purple)f(2))-f(1)} +
" " {cancel(color(red)f(3))-cancel(color(purple)f(2))} +
" " {cancel(color(green)f(4))-cancel(color(red)f(3)}) +
" " {cancel(f(5))-cancel(color(green)f(4))} + ... +

" " {cancel(color(blue)f(n))-cancel(f(n-1))} +
" " {f(n+1)-cancel(color(blue)f(n))}

Similarly, almost all terms vanish, leaving:

S_2 = -f(1) + f(n+1)
" " = f(n+1) -f(1)

Jul 18, 2017

Refer to the Explanation.

Explanation:

Let us say, S=sum_(r=1)^n{f(r)-f(r+1)}. To find S, we substitute,

r=1,2,3,...,n-1,n, successively in {f(r)-f(r+1)}, and get,

S={f(1)-cancelf(2)}+{cancelf(2)-cancelf(3)}+{cancelf(3)-cancelf(4)}

+...+{cancelf(n-1)-cancelf(n)}+{cancelf(n)-f(n+1)},

rArr S=sum_(r=1)^n{f(r)-f(r+1)}=f(1)-f(n+1).

This proves the 1^(st) Assertion.

The Proof of the 2^(nd) Assertion can be obtained similarly.

Otherwise, by what we have proved above,

sum_(r=1)^n{f(r)-f(r+1)}=f(1)-f(n+1).

Multiplying this by -1, we have,

-sum_(r=1)^n{f(r)-f(r+1)}=-{f(1)-f(n+1)}, i.e.,

:. sum_(r=1)^n{f(r+1)-f(r)}=f(n+1)-f(1).

Enjoy Maths.!