Suppose that the cubic function f(x)=(x-a)(x-b)(x-c) has three distinct zeroes: a, b, c. Prove that a tangent line drawn at the average of the zeroes a and b intersect the graph of f at the third zero?

2 Answers
Mar 15, 2018

See below.

Explanation:

Given

f(x) = (x-a)(x-b)(x-c)f(x)=(xa)(xb)(xc)

x_0 = (a+b)/2x0=a+b2

the tangent line at x_0x0 is

y = y_0 + (deltaf_0)(x-x_0)y=y0+(δf0)(xx0)

where

y_0 = f(x_0) = 1/8(a-b)^2(2c-a-b)y0=f(x0)=18(ab)2(2cab)
delta f_0 = f'(x_0) = 3x^2-2(a+b+c)x_0+ab+ac+bc = -1/4(a-b)^2

now the intersection between the tangent line and f(x) we have to solve

f(x) = y_0 + (deltaf_0)(x-x_0) or

x^3-(a+b+c)x^2+(ab+ac+bc)x-abc -( 1/8(a-b)^2(2c-a-b)-1/4(a-b)^2(x-(a+b)/2))=0

or after simplifications

1/2(a+b-2x)^2(x-c)=0

and as we can observe x = c is a root as expected.

Mar 15, 2018

See below:

Explanation:

f((a+b)/2)=((a+b)/2-a)((a+b)/2-b)((a+b)/2-c)
qquad =-1/4(a-b)^2((a+b)/2-c)

Thus, the slope of the line joining the point ((a+b)/2,f((a+b)/2)) to the point (c,0) is

(f((a+b)/2)-0)/((a+b)/2-c) = -1/4(a-b)^2

Now, the derivative of f(x) is given by

f'(x)=(x-a)(x-b)+(x-b)(x-c)+(x-a)(x-c) = (x-a)(x-b)+(2x-a-b)(x-c)

So, the slope of the tangent to the curve at the point ((a+b)/2,f((a+b)/2)) is

f'((a+b)/2)= ((a+b)/2-a)((a+b)/2-b)+(2 times (a+b)/2-a-b)((a+b)/2-c) = -1/4(a-b)^2

Thus the tangent at the point ((a+b)/2,f((a+b)/2)) goes through (c,0).