The difference between the interior and the exterior angle of a regular polygon is 100degree . find the number of sides of the polygon. ?

1 Answer
Nov 23, 2015

The polygon has 9 sides

Explanation:

What information do we know and how do we use it to model this situation?

#color(green)("Let the number of sides be "n)#
#color(green)("Let internal angle be "color(white)(.......)A_i#
#color(green)("Let external angle be "color(white)(.......)A_e#
Assumption: External angle less than internal angle #color(green)(-> A_e < A_i)#

Thus #color(green)(A_i - A_e>0 => A_i - A_e=100#

Not that #sum " is: the sum of"#

#color(brown)("Known: "underline("Sum of internal angles is")color(white)(..)color(green)((n-2)180))#

So #color(green)(sumA_i = (n-2)180................................(1))#

#color(brown)("Known:"underline(" Sum of external angles is")color(white)(..)color(green)(360^0))#

So #color(green)(sumA_e=360 ..............................................(2))#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Equation (1) - Equation (2)")#

#sum (A_i-Ae)= (n-2)180 -360#

But also #sum (A_i-Ae)= sum "difference"#

There are #n# sides each with a difference of #100^0#
So #sum "difference" = 100n# giving:

#color(green)(sum (A_i-Ae) = 100n = (n-2)180 -360.................(3))#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#color(blue)("Collecting like terms")#

#100n = 180n - 360 - 360#

#80n =720#

#n=720/80 = 9#