The exponential function e^x can be defined as a power series as: e^x=sum_(n=0)^oo x^n/(n!)=1+x+x^2/(2!)+x^3/(3!)+... Can you use this definition to evaluate sum_(n=0)^(oo)((0.2)^n e^-0.2)/(n!)?

1 Answer
Apr 25, 2017

sum_(n=0)^(oo)((0.2)^n e^-0.2)/(n!) = 1

Explanation:

We can write the sum as:

sum_(n=0)^(oo)((0.2)^n e^-0.2)/(n!) = e^-0.2 \ sum_(n=0)^(oo)((0.2)^n )/(n!) \ \ .....(star)

And using the above sum definition of e^x we have:

sum_(n=0)^(oo)((0.2)^n )/(n!) = e^(0.2)

Substituting this result into (star) we get:

sum_(n=0)^(oo)((0.2)^n e^-0.2)/(n!) = e^-0.2 \ e^(0.2)
" " = e^0
" " = 1