Assume that the line #L# that passes through #P(2016,2017)# cuts #AB# at #E# and #CD# at #F#, respectively, as shown in the figure.
let #AE=b, and EB=a#,
given that #L# divides the parallelogram #ABCD# into two regions of equal area, #=> CF=a, and FD=b#,
#=> a+b=6#
#=> a=6-b#
#=> E(x_E,y_E)=(2+b,4)#
#=> F(x_F, y_F)=(a,0)#
#=># slope of #FE=m_(FE)=4/(2+b-a)=4/(2+b-6+b)=2/(b-2)#
#=># slope of #FP=m_(FP)=(2017)/(2016-a)=(2017)/(2016-6+b)=(2017)/(2010+b)#
As #m_(FE)=m_(FP)#,
#=> 2/(b-2)=(2017)/(2010+b)#
#=> b=8054/2015#
#=> a=6-8054/2015=4036/2015#
#=># slope #=m=2/(b-2)=2/((8054/2015)-2)=2015/2012#
Hence, equation of the line passing through #(a,0)=(4036/2015,0)# with a slope of #m=2015/2012# in slope-intercept form is :
#y=2015/2012(x-4036/2015)#
Hence, equation of #L# in standard form is :
#2015x-2012y=4036#