The perimeter of a triangle is 60 cm. it's height is 17.3. what is its area?

1 Answer
Jun 27, 2016

0.01732050.0173205["m"^2m2]

Explanation:

Adopting side aa as the triangle base, the upper vertice describes the ellipse

(x/r_x)^2+(y/r_y)^2=1(xrx)2+(yry)2=1

where

r_x = (a+b+c)/2rx=a+b+c2 and r_y = sqrt(((b+c)/2)^2-(a/2)^2)ry=(b+c2)2(a2)2

when y_v = h_0yv=h0 then x_v = (sqrt[a^2 - (b + c)^2 + 4 h_0^2] p_0)/(2 sqrt[a^2 - (b + c)^2])xv=a2(b+c)2+4h20p02a2(b+c)2. Here p_v={x_v,y_v}pv={xv,yv} are the upper vertice coordinates p_0=a+b+cp0=a+b+c and p=p_0/2p=p02.

The ellipse focuses location are:

f_1 = {-a/2,0}f1={a2,0} and f_2 = {a/2,0}f2={a2,0}

Now we have the relationships:

1) p (p-a) (p-b) (p-c) = (a^2 h_0^2)/4p(pa)(pb)(pc)=a2h204 Henon´s formula

2) From a + norm(p_v-f_1)+norm(p_v-f_2) = p_0a+pvf1+pvf2=p0 we have

a + sqrt[h_0^2 + 1/4 (a - (sqrt[a^2 - (b + c)^2 + 4 h_0^2] p_0)/sqrt[ a^2 - (b + c)^2])^2] + sqrt[ h_0^2 + 1/4 (a + (sqrt[a^2 - (b + c)^2 + 4 h_0^2] p_0)/sqrt[ a^2 - (b + c)^2])^2] = p_0a+   h20+14⎜ ⎜aa2(b+c)2+4h20p0a2(b+c)2⎟ ⎟2+   h20+14⎜ ⎜a+a2(b+c)2+4h20p0a2(b+c)2⎟ ⎟2=p0

3) a+b+c=p_0a+b+c=p0

Solving 1,2,3 for a,b,ca,b,c gives

( a = ( p_0^2-4 h_0^2)/(2 p_0), b= (4 h_0^2 + p_0^2)/(4 p_0), c= (4 h_0^2 + p_0^2)/(4 p_0) )(a=p204h202p0,b=4h20+p204p0,c=4h20+p204p0)

and substituting h_0=0.173, p_0=0.60h0=0.173,p0=0.60

{a = 0.200237, b = 0.199882, c = 0.199882}{a=0.200237,b=0.199882,c=0.199882}

with an area of 0.01732050.0173205