The point P(a,b) lies on the line through A(-1,-2) and B(3,0) and PA=#125#{the square root of 125}. what are the values of a and b?

PA= #125#

1 Answer

#a=9, b=3\ \ or \ \ a=-11, b=-7#

Explanation:

The slope of line AB passing through the points #A(-1, -2)# & #B(3, 0)# will be equal to that of line AB passing through the points #P(a, b)# & #A(-1, -2)# because the line is the same

#\frac{b-(-2)}{a-(-1)}=\frac{-2-0}{-1-3}#

#a=2b+3\ ...........(1)#

Now, suing distance formula, the distance between the points #P(a, b)# & #A(-1, -2)# is given as

#PA=\sqrt{(a-(-1))^2+(b-(-2))^2}#

#\sqrt{(a+1)^2+(b+2)^2}=\sqrt125\quad (\because PA=\sqrt125)#

#(a+1)^2+(b+2)^2=125#

#(2b+3+1)^2+(b+2)^2=125#

#5(b+2)^2=125#

#b+2=\pm 5#

#b=3, -7#

setting the above values of #b# in (1), we get corresponding values of #a# as follows

#a=2(-2\pm5)+3#

#a=9, -11#

Hence, we get

#a=9, b=3\ \ or \ \ a=-11, b=-7#