We have
l=sqrt(24)al=√24a
l_g=l+1/5 l = 6/5llg=l+15l=65l
vec r_g = (0,l_g/cosalpha,0)→rg=(0,lgcosα,0)
where (u,v,w)(u,v,w) must be understood as
u hat i + v hat j + w hat kuˆi+vˆj+wˆk
Here
alpha = arctan(1/sqrt(24))α=arctan(1√24)
vec omega = (0,cosalpha,sinalpha)omega→ω=(0,cosα,sinα)ω
vec v_g = vec r_g xx vec omega = 17/2a^2m omega(0,cosalpha,sinalpha)→vg=→rg×→ω=172a2mω(0,cosα,sinα)
then
abs(vec v_g)=17/2a^2m omega∣∣→vg∣∣=172a2mω
and
(D) Omega = abs(vec v_g)/abs(vec r_g) = 1/5 a omega
or
vec Omega = (0,0,1)Omega
Now
vec L_O = J_(omega) vec omega+J_(Omega) vec Omega
with
J_(omega)=(ma^2)/2+(4m(2a)^2)/2
We have also
vec L_g = J_(omega) vec omega and
(B) norm(vec L_g)=17/2a^2m omega
and
J_(Omega)=(ma^2)/4+ml_0^2+((4m)(2a)^2)/4+4m(2l_0)^2
with l_0 = l cos alpha
so
(A) << vec L_O, hat k >> = J_(Omega)Omega+J_(omega)<< vec omega, hat k >> = J_(Omega)Omega+J_(omega)omega sin alpha
and
norm(vec L_O) = sqrt(<< vec L_O, hat k >>^2+(J_(omega)omega cosalpha)^2 )
or
(C) norm(vec L_O) = sqrt((J_(Omega)Omega)^2+2J_(Omega)J_(omega) Omega omega sinalpha+(J_(omega)omega)^2)
The final numeric results are left to the reader as an exercise.