The vector #vec A# is on a coordinate plane. The plane is then rotated counterclockwise by #phi#. How do I find the components of #vec A# in terms of the components of #vec A# once the plane is rotated?

Original coordinate plane:

#vecA = veci A_x + vecj A_y#

Rotated plane:

#vecA = veci' A_x' + vecj' A_y'#

So,

#veci ' = veci cos phi + vecj sin phi#
#vecj ' = -veci sin phi + vecj cos phi#

#vec A = veci' A_x' + vecj' A_y = vec i(A_x' cos phi - A_y' sin phi) + vec j (A_x' sin phi + A_y' cos phi) #

(I skipped a few steps above.)

#vecA = veci A_x + vecj A_y#, so

#A_x = A_x' cos phi - A_y' sin phi#

#A_y = A_x' sin phi + A_y' cos phi#

However, apparently #A_y = -A_x' sin phi + A_y' cos phi#. I'm not sure where I went wrong?

1 Answer
Apr 30, 2018

see below

Explanation:

The matrix # R(alpha)# will rotate CCW any point in the xy-plane through an angle #alpha# about the origin:

  • # R(alpha)=((cos alpha , -sin alpha ), (sin alpha , cos alpha))#

But instead of rotating CCW the plane, rotate CW the vector #mathbf A# to see that in the original x-y coordinate system, its co-ordinates are:

#mathbf A' = R(-alpha) mathbf A#

#implies mathbf A = R( alpha) mathbf A'#

#implies ((A_x),(A_y)) = ((cos alpha , -sin alpha ), (sin alpha , cos alpha)) ((A'_x),(A'_y))#

IOW, I think your reasoning looks good.