How does sec^2(pi/2-theta)+csc^2(pi/2-theta)=sec^2thetacsc^2theta?

This is the original question.
Show: sec^2(pi/2-theta)+csc^2(pi/2-theta)=sec^2thetacsc^2theta

This is the first part of the answer that my answer book gives me.
sec^2(pi/2-theta)+csc^2(pi/2-theta)=sec^2thetacsc^2theta
I don't see how sec^2(pi/2-theta)+csc^2(pi/2-theta) is equal to sec^2thetacsc^2theta.

1 Answer
Aug 2, 2017

LHS=sec^2(pi/2-theta)+csc^2(pi/2-theta)

=csc^2(theta)+sec^2(theta)

=1/sin^2(theta)+1/cos^2(theta)

=(sin^2(theta)+cos^2(theta)) /(sin^2(theta)cos^2(theta))

=1 /(sin^2(theta)cos^2(theta))=RHS

=sec^2thetacsc^2theta