Three beakers each contain "100 mL"100 mL of acidic solution with a "pH"pH of 3.003.00. The acids in the beakers are "HCl"HCl, "HNO"_2HNO2, and "HI"HI. If "50 mL"50 mL of "0.1 M NaOH"0.1 M NaOH is added to each beaker, which resulting solution will have the lowest "pH"pH?

1 Answer
Apr 18, 2018

All three solutions have the same pH.

Explanation:

"HCl"HCl and "HI"HI

The "HCl"HCl and "HI"HI are both strong acids, so they will each give the same result.

Let's call them "HX"HX.

If

"pH = 3.00"pH = 3.00

Then

["H"_3"O"^"+"] = 10^"-3.00"color(white)(l)"mol/L" = 1.00 × 10^"-3"color(white)(l)"mol/L"[H3O+]=10-3.00lmol/L=1.00×10-3lmol/L

The acid will react completely with the "NaOH"NaOH.

"Moles of HX" = 100 color(red)(cancel(color(black)("mL HX"))) × (1.00 × 10^"-3" color(white)(l)"mmol HX")/(1 color(red)(cancel(color(black)("mL HX")))) = "0.100 mmol HX"

"Moles of NaOH" = 50 color(red)(cancel(color(black)("mL NaOH"))) × "0.1 mol NaOH"/(1 color(red)(cancel(color(black)("mL NaOH")))) = "5.0 mmol NaOH"

color(white)(mmmmmll)"HX + NaOH → NaX" + "H"_2"O"
"I/mol": color(white)(mll)0.100 color(white)(mm)5.0
"C/mol": color(white)(m)"-0.100"color(white)(ml)"-0.100"
"E/mol": color(white)(mll)0color(white)(mmmll)4.9

So, we have 4.9 mmol of "NaOH" in 150 mL of solution.

["OH"^"-"] = "4.9 mmol"/"150 mL" = "0.033 mol/L"

"pOH = -log"0.033 = 1.5

"pH = 14.00 - pOH = 14.00 - 1.5 = 12.5"

bb("HNO"_2)

"HNO"_2 is a weak acid with K_text(a) = 4.0 × 10^"-4".

We must calculate the initial concentration of "HNO"_2 that will give a final concentration of 1.00 × 10^"-3"color(white)(l)"mol/L H"_3"O"^"+".

color(white)(mmmmmlmm)"HNO"_2 + "H"_2"O" ⇌ "H"_3"O"^"+"color(white)(m) +color(white)(mm) "NO"_2^"-"
"I/mol·l"^"-1": color(white)(mmmm)c color(white)(mmmmmmmll)0color(white)(mmmmmmll)0
"C/mol·l"^"-1": color(white)(m)"-1.00 × 10"^"-3"color(white)(mm)"+1.00 × 10"^"-3"color(white)(m)"+1.00 × 10"^"-3"
"E/mol·l"^"-1": color(white)(m)c"-1.00 × 10"^"-3"color(white)(mml)"1.00 × 10"^"-3"color(white)(mm)"1.00 × 10"^"-3"

K_text(a) = (["H"_3"O"^"+"]["NO"_2^"-"])/(["HNO"_2]) = (1.00 × 10^"-3")^2/(c - 1.00 ×10^"-3") = 4.0 × 10^"-4"

1.00 × 10^"-6" = 4.0 × 10^"-4"c - 4.00 × 10^"-7"

c = (1.00 × 10^"-6" + 4.00 × 10^"-7")/(4.0 × 10^"-4") = (1.40 × 10^"-6")/(4.0 × 10^"-4") = 3.5 × 10^"-3"

["HNO"_2] = 3.5 × 10^"-3"color(white)(l)"mol/L"

The "HNO"_2 will react completely with the "NaOH".

"Moles of HNO"_2 = 100 color(red)(cancel(color(black)("mL HNO"_2))) × (3.5 × 10^"-3" color(white)(l)"mmol HNO"_2)/(1 color(red)(cancel(color(black)("mL HNO"_2)))) = "0.35 mmol HX"

color(white)(mmmmll)"HNO"_2 + "NaOH → NaX" + "H"_2"O"
"I/mol": color(white)(mll)0.35 color(white)(mmm)5.0
"C/mol": color(white)(m)"-0.35"color(white)(mml)"-0.35"
"E/mol": color(white)(mll)0color(white)(mmmm)4.6

So, we have 4.6 mmol of "NaOH" in 150 mL of solution.

["OH"^"-"] = "4.6 mmol"/"150 mL" = "0.033 mol/L"

"pOH = -log"0.031 = 1.5

"pH = 14.00 - pOH = 14.00 - 1.5 = 12.5"

All three solutions have the same pH.