Two corners of a triangle have angles of (2 pi )/ 3 2π3 and ( pi ) / 6 π6. If one side of the triangle has a length of 17 17, what is the longest possible perimeter of the triangle?

1 Answer
Oct 11, 2017

Largest possible perimeter of the triangle == 63.4449

Explanation:

Three angles of the triangles are pi/6, pi/6, (2pi)/3π6,π6,2π3
Side a=17a=17
a/sin a=b/sin b=c/sin casina=bsinb=csinc
17/sin (pi/6)=b/sin(pi/6)=c/sin((2pi)/3)17sin(π6)=bsin(π6)=csin(2π3)
Side b=17, c=(17*sin ((2pi)/3))/sin(pi/6)b=17,c=17sin(2π3)sin(π6)
c=(17*sin(pi/3))/sin(pi/6)=(17*(sqrt3/2))/(1/2)c=17sin(π3)sin(π6)=17(32)12
Side c=17sqrt3c=173

:. Perimeter of the triangle =17+17+17sqrt3=17(2+sqrt3)
Perimeter = 63.4449