Two corners of a triangle have angles of (3 pi )/ 8 3π8 and ( pi ) / 2 π2. If one side of the triangle has a length of 4 4, what is the longest possible perimeter of the triangle?

1 Answer

8+4\sqrt2+4\sqrt{4+2\sqrt2}8+42+44+22

Explanation:

Let in \Delta ABC, \angle A={3\pi}/8, \angle B=\pi/2 hence

\angle C=\pi-\angle A-\angle B

=\pi-{3\pi}/8-\pi/2

={\pi}/8

For maximum perimeter of triangle , we must consider the given side of length 4 is smallest i.e. side c=4 is opposite to the smallest angle \angle C=\pi/8

Now, using Sine rule in \Delta ABC as follows

\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}

\frac{a}{\sin ({3\pi}/8)}=\frac{b}{\sin (\pi/2)}=\frac{4}{\sin ({\pi}/8)}

a=\frac{4\sin ({3\pi}/8)}{\sin (\pi/8)}

a=4(\sqrt2+1) &

b=\frac{4\sin ({\pi}/2)}{\sin (\pi/8)}

b=4\sqrt{4+2\sqrt2}

hence, the maximum possible perimeter of the \triangle ABC is given as

a+b+c

=4(\sqrt2+1)+4\sqrt{4+2\sqrt2}+4

=8+4\sqrt2+4\sqrt{4+2\sqrt2}