Two corners of a triangle have angles of (5 pi )/ 12 and ( pi ) / 12 . If one side of the triangle has a length of 15 , what is the longest possible perimeter of the triangle?

1 Answer
Dec 20, 2017

Longest possible perimeter P = 128.9363

Explanation:

Given :
/_A = pi/12 , /_B = ((5pi)/12)

/_C = pi - pi/12 - (5pi)/12 = pi/2

To get the longest perimeter, smallest angle should correspond to the side of length 15

a / sin A = b / sin B = c / sin C

15/ sin (pi/12) = b / sin ((5pi)/12) = c / sin (pi/2)

b = (15 * sin ((5pi)/12)) / sin (pi/12) = 55.9808

c = (15 * sin (pi/2) ) / sin (pi/12) = 57.9555

Perimeter P = 15 + 55.9809 + 57.9555 = 128.9363