Two corners of a triangle have angles of # (5 pi )/ 12 # and # ( pi ) / 12 #. If one side of the triangle has a length of # 9 #, what is the longest possible perimeter of the triangle?

1 Answer
Nov 23, 2016

#P=9(3+sqrt3+sqrt6+sqrt2)approx77.36#.

Explanation:

In #triangleABC#, let #A=(5pi)/12,B=pi/12#. Then

#C=pi-A-B#
#C=(12pi)/12-(5pi)/12-pi/12#
#C=(6pi)/12=pi/2#.

In all triangles, the shortest side is always opposite the shortest angle. Maximizing the perimeter means putting the largest value we know (9) in the smallest position possible (opposite #angleB#). Meaning for the perimeter of #triangleABC# to be maximized, #b=9#.

Using the law of sines, we have

#sinA/a=sinB/b=sinC/c#

Solving for #a#, we get:

#a=(bsinA)/sinB=(9sin((5pi)/12))/sin(pi/12)=(9(sqrt6+sqrt2)//4)/((sqrt6-sqrt2)//4)=...=9(2+sqrt3)#

Similarly, solving for #c# yields

#c=(bsinC)/sinB=(9sin(pi/2))/(sin(pi/12))=(9(1))/((sqrt6-sqrt2)//4)=...=9(sqrt6+sqrt2)#

The perimeter #P# of #triangleABC# is the sum of all three sides:

#P=color(orange)a+color(blue)b+color(green)c#
#P=color(orange)(9(2+sqrt3))+color(blue)9+color(green)(9(sqrt6+sqrt2))#
#P=9(2+sqrt3+1+sqrt6+sqrt2)#
#P=9(3+sqrt3+sqrt6+sqrt2)approx77.36#