Two corners of a triangle have angles of (5 pi )/ 12 5π12 and ( pi ) / 12 π12. If one side of the triangle has a length of 9 9, what is the longest possible perimeter of the triangle?

1 Answer
Nov 23, 2016

P=9(3+sqrt3+sqrt6+sqrt2)approx77.36P=9(3+3+6+2)77.36.

Explanation:

In triangleABCABC, let A=(5pi)/12,B=pi/12A=5π12,B=π12. Then

C=pi-A-BC=πAB
C=(12pi)/12-(5pi)/12-pi/12C=12π125π12π12
C=(6pi)/12=pi/2C=6π12=π2.

In all triangles, the shortest side is always opposite the shortest angle. Maximizing the perimeter means putting the largest value we know (9) in the smallest position possible (opposite angleBB). Meaning for the perimeter of triangleABCABC to be maximized, b=9b=9.

Using the law of sines, we have

sinA/a=sinB/b=sinC/csinAa=sinBb=sinCc

Solving for aa, we get:

a=(bsinA)/sinB=(9sin((5pi)/12))/sin(pi/12)=(9(sqrt6+sqrt2)//4)/((sqrt6-sqrt2)//4)=...=9(2+sqrt3)

Similarly, solving for c yields

c=(bsinC)/sinB=(9sin(pi/2))/(sin(pi/12))=(9(1))/((sqrt6-sqrt2)//4)=...=9(sqrt6+sqrt2)

The perimeter P of triangleABC is the sum of all three sides:

P=color(orange)a+color(blue)b+color(green)c
P=color(orange)(9(2+sqrt3))+color(blue)9+color(green)(9(sqrt6+sqrt2))
P=9(2+sqrt3+1+sqrt6+sqrt2)
P=9(3+sqrt3+sqrt6+sqrt2)approx77.36