Two corners of a triangle have angles of (5 pi )/ 12 5π12 and ( pi ) / 12 π12. If one side of the triangle has a length of 5 5, what is the longest possible perimeter of the triangle?

1 Answer
Aug 16, 2016

=11.12=11.12

Explanation:

Clearly this is a right angled triangle as pi-(5pi)/12-pi/12=pi/2π5π12π12=π2
One side=hypoten use =5side=hypotenuse=5 ;So other sides =5sin(pi/12) and 5cos( pi/12)=5sin(π12)and5cos(π12)

Therefore Perimeter of the triangle=5+5sin(pi/12)+ 5cos( pi/12)=5+5sin(π12)+5cos(π12)

=5+(5times0.2588)+(5times0.966)=5+(5×0.2588)+(5×0.966)

=5+1.3+4.83)=5+1.3+4.83)

=11.12=11.12