Two corners of a triangle have angles of 5π12 and π3. If one side of the triangle has a length of 15, what is the longest possible perimeter of the triangle?

1 Answer
Feb 19, 2018

Longest possible perimeter

p=a+b+c53.86

Explanation:

To longest possible perimeter of the triangle.

Given : ˆA=5π12,ˆB=π3, one side=15

Third angle ˆC=π5π12π3=π4

To get the longest perimeter, side 15 should correspond to the smallest angle ˆC=π4

enter image source here

Using sine law, asinA=bsinB=csinC

asin(5π)/12=bsin(π3)=15sin(π4)

a=15sin(5π12)sin(π4)20.49

b=15sin(π)3sin(π4)18.37

Longest possible perimeter

p=a+b+c=20.49+18.37+15=53.86