Two corners of a triangle have angles of (5 pi )/ 8 5π8 and ( pi ) / 4 π4. If one side of the triangle has a length of 14 14, what is the longest possible perimeter of the triangle?

1 Answer
Dec 5, 2017

Area of Areaof largest possible Delta = color (purple)(160.3294)

Explanation:

Three angles are pi/4, ((5pi)/8), (pi -( (pi/4)+ ((5pi)/8) =( pi/8)

a/ sin A = b / sin B = c / sin C

To get the largest possible are, smallest angle should correspond to the side of length 14

14 / sin (pi/8) = b / sin ((pi)/4) = c / sin ((5pi)/8)

b = (14*sin (pi/4)) / sin (pi / 8) = (14*(1/sqrt2)) / (0.3827) = 25.8675

c = (14* sin ((5pi)/8) / sin ((pi)/8) = (14 * 0.9239)/(0.3827) = 33.7983

Semi perimeter s = (a + b + c) / 2 = (14+ 25.8675 + 33.7983)/2 = 36.8329

s-a = 36.8329 -14 = 22.8329
s-b = 36.8329 -25.8675 = 10.9654
s-c = 36.8329 - 33.7983 = 3.0346

Area of Delta = sqrt (s (s-a) (s-b) (s-c))

Area of Delta = sqrt( 36.8329 * 22.8329 * 10.9654 * 3.0346)
Area of largest possible Delta = color (purple)(160.3294)