Two corners of a triangle have angles of (7 pi )/ 12 7π12 and (3 pi ) / 8 3π8. If one side of the triangle has a length of 2 2, what is the longest possible perimeter of the triangle?

1 Answer
Feb 11, 2018

Longest possible perimeter = color(green)(30.9562=30.9562

Explanation:

enter image source here

Given Two angles hatA = ((7pi)/4), hatB = ((3pi)/8)ˆA=(7π4),ˆB=(3π8)

Third hatC = pi - ((7pi)/12) - ((3pi)/8) = pi/24ˆC=π(7π12)(3π8)=π24

We know, a / sin A = b / sin B = c / sin CasinA=bsinB=csinC

To get longest perimeter, length should correspond to the least hatCˆC

:. a / sin ((7pi)/24) = b / sin ((3pi)/8) = 2 / sin (pi/24)

a = (2 * sin ((7pi)/12)) / sin(pi/24) = 14.8

b = (2 * sin ((3pi)/8)) / sin (pi/24) = 14.1562

Longest perimeter = a + b + c = 14.8 + 14..1562 + 2 = 30.9562