Two corners of a triangle have angles of (7 pi ) / 12 7π12 and pi / 6 π6. If one side of the triangle has a length of 2 2, what is the longest possible perimeter of the triangle?

1 Answer
Dec 20, 2017

Longest possible perimeter P = 8.6921

Explanation:

Given : /_ A = pi /6, /_B = (7pi)/12:A=π6,B=7π12

/_C = (pi - pi /6 - (7pi)/12 ) = (pi)/4 C=(ππ67π12)=π4

To get the longest perimeter, we should consider the side corresponding to the angle that is the smallest.

a / sin A = b / sin B = c / sin CasinA=bsinB=csinC

2 / sin (pi/6) = b / sin ((7pi)/12) = c / sin ((pi)/4)2sin(π6)=bsin(7π12)=csin(π4)

:. b = (2 * sin ((7pi)/12)) / sin (pi/6) = 3.8637

c = (2 * sin (pi/4)) / sin (pi/6) = 2.8284

Longest possible perimeter P = 2 + 3.8637 + 2.8284 = 8.6921