Two corners of a triangle have angles of (7 pi )/ 12 7π12 and pi / 8 π8. If one side of the triangle has a length of 2 2, what is the longest possible perimeter of the triangle?

1 Answer
Oct 8, 2017

Longest possible perimeter =11.1915=11.1915

Explanation:

The three angles are (7pi)/12,pi/8,(7pi)/247π12,π8,7π24
Smallest side has length 2 & /_pi/8π8

2/sin(pi/8)=b/sin((7pi)/24)=c/sin((7pi)/12)2sin(π8)=bsin(7π24)=csin(7π12)
b=(2*sin((7pi)/24))/sin(pi/8)b=2sin(7π24)sin(π8)
b=(2*0.7934)/0.3827=4.1463b=20.79340.3827=4.1463

2/sin(pi/8)=c/sin((7pi)/12)2sin(π8)=csin(7π12)
c=(2*sin((7pi)/12))/sin(pi/8)c=2sin(7π12)sin(π8)
c=(2*0.9659)/0.3829=5.0452c=20.96590.3829=5.0452

Longest possible perimeter =2+4.1463+5.0452=11.1915=2+4.1463+5.0452=11.1915