Two corners of a triangle have angles of pi / 12 π12 and pi / 3 π3. If one side of the triangle has a length of 6 6, what is the longest possible perimeter of the triangle?

1 Answer

18+9\sqrt2+6\sqrt3+3\sqrt618+92+63+36

Explanation:

Let in \Delta ABC, \angle A=\pi/12, \angle B=\pi/3 hence

\angle C=\pi-\angle A-\angle B

=\pi-\pi/12-\pi/3

={7\pi}/12

For maximum perimeter of triangle , we must consider the given side of length 6 is smallest i.e. side a=6 is opposite to the smallest angle \angle A=\pi/12

Now, using Sine rule in \Delta ABC as follows

\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}

\frac{6}{\sin (\pi/12)}=\frac{b}{\sin (\pi/3)}=\frac{c}{\sin ({7\pi}/12)}

b=\frac{6\sin (\pi/3)}{\sin (\pi/12)}

b=9\sqrt2+3\sqrt6 &

c=\frac{6\sin ({7\pi}/12)}{\sin (\pi/12)}

c=12+6\sqrt3

hence, the maximum possible perimeter of the \triangle ABC is given as

a+b+c

=6+9\sqrt2+3\sqrt6+12+6\sqrt3

=18+9\sqrt2+6\sqrt3+3\sqrt6