Two corners of an isosceles triangle are at #(1 ,3 )# and #(5 ,8 )#. If the triangle's area is #6 #, what are the lengths of the triangle's sides?

1 Answer

possible triangle with sides:#sqrt(92537)=3.70974#,#sqrt(92537)=3.70974#,#sqrt41=6.40312#
possible triangle with sides:#sqrt413#,#" "sqrt41#,#" "1.89495#

Explanation:

Distance between the two points
#=sqrt((5-1)^2+(8-3)^2)=sqrt41#
Let this be the base #b=sqrt41#
Formula for Area of triangle:

Area#=1/2bh#
#6=1/2sqrt41*h#

#h=12/sqrt41#

The two equal sides can now be computed:
Let x be one of the sides
#x=sqrt(h^2+(b/2)^2)#
#x=sqrt((12/sqrt41)^2+((sqrt41)/2)^2)#
#x=1/82sqrt(92537)#
#x=3.70974#
First triangle with sides:
#x=3.70974#
#x=3.70974#
#b=sqrt41=6.40312#

For the second triangle:
the two equal sides are:
#x=sqrt41#
#x=sqrt41#
and the 3rd side #b#
compute the vertex angle of the isosceles triangle first:
Area#=1/2sqrt41*sqrt41*sin theta#
#6=1/2sqrt41*sqrt41*sin theta#
#sin theta=12/41#
#theta=17.0186^@#
Using cosine law
#b=sqrt(x^2+x^2-2*x*x*cos theta)#
#b=sqrt(sqrt41^2+sqrt41^2-2*sqrt41*sqrt41*cos(17.0186^@))#
#b=1.89495" "#units

God bless....I hope the explanation is useful.