Two corners of an isosceles triangle are at (2 ,4 ) and (1 ,8 ). If the triangle's area is 64 , what are the lengths of the triangle's sides?

1 Answer
May 20, 2018

color(blue)((5sqrt(44761))/34 , (5sqrt(44761))/34, sqrt(17)

Explanation:

Let A=(2,4), and B=(1,8)

Then side c=AB

Length of AB=sqrt((1-2)^2+(8-4)^2)=sqrt(17)

Let this be the base of the triangle:

Area is:

1/2ch=64

1/2sqrt(17)(h)=64

h=128/sqrt(17)

For isosceles triangle:

a=b

Since the height bisects the base in this triangle:

a=b=sqrt((c/2)^2+(h^2))

a=b=sqrt((sqrt(17)/2)^2+(128/sqrt(17))^2)=(5sqrt(44761))/34~~31.11

Sides are:

color(blue)((5sqrt(44761))/34 , (5sqrt(44761))/34, sqrt(17)