The length of side of isosceles triangle joining the vertices (2, 6)(2,6) & (7, 5)(7,5)
=\sqrt{(2-7)^2+(6-5)^2}=√(2−7)2+(6−5)2
=\sqrt{26}=√26
If hh is the length of altitude dropped from third vertex to the side/base joining the vertices (2, 6)(2,6) & (7, 5)(7,5) then the area of isosceles triangle
\frac{1}{2}(\text{base})\times \text{(altitude)}12(base)×(altitude)
1/2 \sqrt{26}h=6412√26h=64
h=128/\sqrt{26}h=128√26
Now, using the Pythagorean theorem in a right triangle with legs \sqrt26√26 & 128\/sqrt{26}128√26, length of each of equal sides of isosceles triangle
\sqrt{(\sqrt26)^2+(128/\sqrt{26})^2}√(√26)2+(128√26)2
=25.6155=25.6155
hence, the sides of given isosceles triangle are \sqrt{26}=5.099√26=5.099, 25.615525.6155 & 25.615525.6155