Two corners of an isosceles triangle are at (3 ,9 ) and (2 ,7 ). If the triangle's area is 4 , what are the lengths of the triangle's sides?

1 Answer
May 4, 2016

color(brown)("As a simplified exact value:")

color(blue)(s=sqrt(549)/(2sqrt(17))=(3sqrt(1037))/34)

color(brown)("As an approximate decimal")

color(blue)(s~~2.831" to 3 decimal places")

Explanation:

Tony B

Let the vertices be A,B and C
Let the corresponding sides be a, b, and c.

Let the width be w
Let the vertical height be h
Let the length of sides a and c be s

Given: Area = 4
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determine the value of w")

Using Pythagoras " "w=sqrt( (9-7)^2+(3-2)^2)

color(blue)(=> w= sqrt(16+1) = sqrt(17))
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determine the value of h")

Given area = 4 =1/2wh

color(blue)(h=8/w= 8/sqrt(17))
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Using Pythagoras

s^2=(w/2)^2+h^2

s^2=(sqrt(17)/2)^2+(8/sqrt(17))^2

s=sqrt(17/4+64/17)

s=sqrt(545/68)

color(brown)("As a simplified exact value this:")

color(blue)(s=sqrt(549)/(2sqrt(17))=(3sqrt(1037))/34)

color(brown)("As an approximate decimal")

color(blue)(s~~2.831" to 3 decimal places")