Given Two corners of an isosceles triangle are at (6,3) and (5,8).
Distance between the corners is given by the expression
d=sqrt((x_2-x_1)^2+(y_2-y_1)^2), inserting given values
d=sqrt((5-6)^2+(8-3)^2)
d=sqrt((-1)^2+(5)^2)
d=sqrt26
Now area of triangle is given by
"Area"=1/2"base"xx"height"
Case 1. The corners are base angles.
:."base"=sqrt26
"height"=2xx"Area"/"base" .....(1)
=2xx8/sqrt26=16/sqrt26
Now using the Pythagoras theorem
"leg"=sqrt("height"^2+("base"/2)^2)
"leg"=sqrt((16/sqrt26)^2+(sqrt26/2)^2)
=sqrt(256/26+26/4
=sqrt(128/13+13/2)
=sqrt(425/26)
Case 2. The corners are base angle and the vertex.
"Leg"=sqrt26
Let "base"=b
Also from (1) "height"=2xx"Area"/"base"
"height"=2xx8/"base"
"height"=16/"base"
Now using the Pythagoras theorem
"leg"=sqrt("height"^2+("base"/2)^2)
sqrt26=sqrt("256/b^2+b^2/4), squaring both sides
26="256/b^2+b^2/4
104b^2=1024+b^4
b^4-104b^2+1024=0, solving for b^2 using the quadratic formula
b^2=(104+-sqrt((-104)^2-4xx1024xx1))/2
b^2=52+-sqrt1680, taking square root
b=sqrt(52+-sqrt1680), we have ignored the negative sign as length can not be negative.