Two corners of an isosceles triangle are at (7 ,4 )(7,4) and (3 ,1 )(3,1). If the triangle's area is 64 64, what are the lengths of the triangle's sides?

1 Answer

the lengths are 55 and 1/50sqrt(1654025)=25.72181501654025=25.7218
and 1/50sqrt(1654025)=25.72181501654025=25.7218

Explanation:

Let P_1(3, 1), P_2(7, 4), P_3(x, y)P1(3,1),P2(7,4),P3(x,y)

Use the formula for the area of a polygon

Area=1/2((x_1,x_2,x_3,x_1),(y_1,y_2,y_3,y_1))

Area=1/2(x_1y_2+x_2y_3+x_3y_1-x_2y_1-x_3y_2-x_1y_3)

64=1/2((3,7,x,3),(1,4,y,1))

128=12+7y+x-7-4x-3y

3x-4y=-123" "first equation

We need a second equation which is the equation of the perpendicular bisector of the segment connecting P_1(3, 1),and P_2(7, 4)

the slope =(y_2-y_1)/(x_2-x_1)=(4-1)/(7-3)=3/4

for the perpendicular bisector equation, we need slope=-4/3 and the midpoint M(x_m, y_m) of P_1 and P_2

x_m=(x_2+x_1)/2=(7+3)/2=5
y_m=(y_2+y_1)/2=(4+1)/2=5/2

Perpendicular bisector equation
y-y_m=-4/3(x-x_m)
y-5/2=-4/3(x-5)
6y-15=-8x+40
8x+6y=55" "second equation

Simultaneous solution using first and second equations
3x-4y=-123" "
8x+6y=55" "

x=-259/25 and y=1149/50
and P_3(-259/25, 1149/50)

We can now compute for the other sides of the triangle using distance formula for P_1 to P_3

d=sqrt((x_1-x_3)^2+(y_1-y_3)^2)

d=sqrt((3--259/25)^2+(1-1149/50)^2)

d=1/50sqrt(1654025)
d=25.7218

We can now compute for the other sides of the triangle using distance formula for P_2 to P_3

d=sqrt((x_2-x_3)^2+(y_2-y_3)^2)

d=sqrt((7--259/25)^2+(4-1149/50)^2)

d=1/50sqrt(1654025)
d=25.7218

God bless...I hope the explanation is useful.