Two non collinear position vectors veca & vecba&b are inclined at an angle (2pi)/32π3,where |veca|=3 & |vecb|=4 a=3&b=4. A point P moves so that vec(OP)=(e^t+e^-t)veca +(e^t-e^-t)vecbOP=(et+et)a+(etet)b. The least distance of P from origin O is sqrt2sqrt(sqrtp-q)2pq then p+q =?

2 Answers
Oct 1, 2016

p+q=488p+q=488

Explanation:

vec (OP) = 2cosh(t)vec a+2sinh(t)vec bOP=2cosh(t)a+2sinh(t)b

norm(vec (OP))^2=4(norm veca^2cosh^2(t)+2<< vec a,vec b >> cosh(t)sinh(t)+norm vecb^2sinh^2(t))OP2=4(a2cosh2(t)+2a,bcosh(t)sinh(t)+b2sinh2(t)) or

norm(vec (OP))^2= 4(3^2cosh^2(t)+2cdot 3cdot 4 cdot cos((2pi)/3)cosh(t)sinh(t)+4^2sinh^2(t))OP2=4(32cosh2(t)+234cos(2π3)cosh(t)sinh(t)+42sinh2(t)) and after some simplifications

norm(vec (OP))^2=50 cosh(2 t) - 24 sinh(2 t)-14OP2=50cosh(2t)24sinh(2t)14

Now, min norm(vec (OP))^2 is at the stationary points determined by

d/(dt)norm(vec (OP))^2 = -48 cosh(2 t)+ 100 sinh(2 t) = 0

with real solution at

t = 1/4 log_e(37/13) so

min norm(vec (OP)) = sqrt(2)sqrt(sqrt(481)-7)

Here p=481 and q=7 and finally

p+q=488

Oct 1, 2016

Choosing x-axis in the direction of the vector a,

a=3(cos 0, sin 0)= 3(1, 0) and

b=4(cos (2/3pi), sin (2/3pi)= 4(-1/2, sqrt 3/2).

Now, the vector in the addition for the vector OP are scalar

multiples of a and b, and so, these are collinear with a and b,

respectively.

And so, the angle in between is 2/3pior 2pi-2/3pi.

Now, |OP|^2=(3(e^t+e^-t))^2+(4(e^t-e^-t))^2

-(2)(3)(4)(e^t+e^-t)(e^t-e^-t)cos(2/3pi)

Beyond this, I follow the previous answer, with due compliments

to Cesareo.

Of course, I can add that vector OP for this minimum length

OP= sqrt(2sqrt 481-14) is

sqrt(2sqrt 481-14)(cos 76.25^o, sin 75.25^o)

=5.465(cos 76.25^o, sin 75.25^o), nearly.

The angle ie what this makes with vector a.

A graphical depiction could enhance the merits of this nonpareil

problem.
.

.