Two non collinear position vectors veca & vecb are inclined at an angle (2pi)/3,where |veca|=3 & |vecb|=4 . A point P moves so that vec(OP)=(e^t+e^-t)veca +(e^t-e^-t)vecb. The least distance of P from origin O is sqrt2sqrt(sqrtp-q) then p+q =?

1 Answer
Jun 24, 2016

488

Explanation:

let vecb is along vecx. So the the vector vec{OP} is given as:

vec{OP} = 3sqrt3/2(e^t+e^-t)vecy +(4(e^t-e^-t)-3/2(e^t+e^-t))vecx

hence the distance of P from origin is given as the magnitude of vec(OP). Which is:

l=abs(vec(OP)) = sqrt((3sqrt3/2(e^t+e^-t))^2 + (4(e^t-e^-t)-3/2(e^t+e^-t))^2) = sqrt(27/4 (e^(2t)+e^(-2t)+2)+16(e^(2t)+e^(-2t)-2)+9/4(e^(2t)+e^(-2t)+2)-12(e^(2t)-e^(-2t)))
=sqrt(13e^(2t)+37e^(-2t)-14) = sqrt((sqrt13 e^(t)-sqrt37e^(-t))^2 + 2(sqrt(37xx13)-7))

for the minimum length, (sqrt13 e^(t)-sqrt37e^(-t)) =0, hence,

p=37xx13 = 481 and q =7

hence, p+q = 488