Two objects have masses of 32 MG32MG and 35 MG35MG. How much does the gravitational potential energy between the objects change if the distance between them changes from 4 m4m to 24 m24m?

1 Answer
Oct 2, 2017

Change in Gravitational Potential Energy=1.5563\ times 10^(-20)J

Explanation:

Gravitational potential energy is given by,

U = - \frac{Gm1m2}{r}

Given that,
m1 = 32mg = 32\times 10^(-6) kg
m2 = 35mg = 35\times 10^(-6)kg
Initial distance between the objects = r = 4m
Final distance between the objects = r= 24m

We will calculate the change in gravitational potential energy as:

When r= 4m ,

U1 = - \frac{Gm1m2}{4m}

when r = 24m,

U2 = - \frac{Gm1m2}{24}

Change in Gravitational Potential Energy = U2- U1

=(- \frac{Gm1m2}{24} ) - ( - \frac{Gm1m2}{4})

=(- \frac{Gm1m2}{24} + \frac{Gm1m2}{4})

=Gm1m2(- \frac{1}{24} + \frac{1}{4})

=Gm1m2(- \frac{1}{24} + \frac{1}{4}(6/6))

=Gm1m2(\frac{-1+6}{24} )

=Gm1m2(\frac{5}{24} )

Substitute the values of G,m1 and m2:

= 6.67\times 10^(-11)\times 32\times 10^(-6) kg\ times35\times 10^(-6)kg\ times(5/24)

= 6.67\times32\times35\times(5/24)\times10^(-11-6-6)

=6.67\times (5600/24)\times10^(-23)

=1556.333\times 10^(-23) J

=1.5563\ times 10^(-20)J