Two objects have masses of 45 MG and 54 MG. How much does the gravitational potential energy between the objects change if the distance between them changes from 48 m to 18 m?

1 Answer
Aug 24, 2017

As the distance between the objects decreases, the gravitational force increases.

Explanation:

Given/Known:

The mass must be converted from mg to kg.

m_1=45"mg"xx(1"g")/(1000"mg")xx(1"kg")/(1000"g")="0.000045 kg"

m_2="0.000054 kg"

d_1="48 m"

d_2="18 m"

Universal gravitation constant, G =6.67xx10^(-11)"N"*"m"^2"/kg"^2

Equation:

"F"_"grav"="G"((m_1m_2)/(d^2))

Gravitational force at 48 m

"F"_"grav"=(6.67xx10^(-11) ("N"*color(red)cancel(color(black)("m"^2)))/color(red)cancel(color(black)("kg"^2))xx0.000045color(red)cancel(color(black)("kg"))xx0.000054color(red)cancel(color(black)("kg")))/(48color(red)cancel(color(black)("m"^2)))=7.0xx10^(-23)" N"

Gravitational force at 18 m
"F"_"grav"=(6.67xx10^(-11) ("N"*color(red)cancel(color(black)("m"^2)))/color(red)cancel(color(black)("kg"^2))xx0.000045color(red)cancel(color(black)("kg"))xx0.000054color(red)cancel(color(black)("kg")))/(18color(red)cancel(color(black)("m"^2)))=5.0xx10^(-22)" N"