Urgent! The polynomials ax^3-3x^2+2x-3ax33x2+2x3 and ax^2-5x+aax25x+a when divided by x-2x2 leave remainders of pp and qq respectively. Find the value of aa if p=3qp=3q. How? Urgent thanks!

1 Answer
Nov 17, 2016

a=19/7,p=75/7,q=25/7a=197,p=757,q=257

Explanation:

Calling

f_1(x)=ax^3-3x^2+2x-3f1(x)=ax33x2+2x3
f_2(x)=ax^2-5x+af2(x)=ax25x+a

we know that

f_1(x)=q_1(x)(x-2)+pf1(x)=q1(x)(x2)+p and
f_2(x)=q_2(x)(x-2)+qf2(x)=q2(x)(x2)+q

so

f_1(2) = 8a-12+4-3=pf1(2)=8a12+43=p
f_2(2)=4a-10+a=qf2(2)=4a10+a=q and also
p=3qp=3q

Solving

{(8a-11=p),(5a-10=q),(p=3q):}

we obtain

a=19/7,p=75/7,q=25/7