How do I find the integral #intcos(x)ln(sin(x))dx# ?
1 Answer
Jul 30, 2014
#=ln(sin(x))(sin(x)-1)+c# , where#c# is a constantExplanation
#=intcos(x)ln(sin(x))dx# let's
#sin(x)=t# ,#=># #cos(x)dx=dt#
#=intln(t)*1dt# Using Integration by Parts,
#int(I)(II)dx=(I)int(II)dx-int((I)'int(II)dx)dx# where
#(I)# and#(II)# are functions of#x# , and#(I)# represents which will be differentiated and#(II)# will be integrated subsequently in the above formulaSimilarly following for the problem,
#=ln(t)int1*dt-int((lnt)'intdt)dt#
#=tln(t)-int1/t*tdt#
#=tln(t)-t+c# , where#c# is a constant
#=t(ln(t)-1)+c# , where#c# is a constant
#=sin(x)(lnsin(x)-1)+c# , where#c# is a constant