Using the definition of convergence, how do you prove that the sequence #{2^ -n}# converges from n=1 to infinity?

1 Answer
Nov 30, 2016

Use the properties of the exponential function to determine N such as #|2^(-n)-2^(-m)| < epsilon# for every #m,n > N#

Explanation:

The definition of convergence states that the #{a_n}# converges if:

#AA epsilon > 0 " " EE N: AA m,n>N " " |a_n-a_m| < epsilon#

So, given #epsilon >0# take #N > log_2(1/epsilon)# and #m,n > N# with #m < n#

As #m < n#, #(2^(-m) - 2^(-n) )> 0# so #|2^(-m) - 2^(-n)| = 2^(-m) - 2^(-n)#

#2^(-m) - 2^(-n) = 2^(-m)(1- 2^(m-n))#

Now as #2^x# is always positive, #(1- 2^(m-n) ) < 1#, so

#2^(-m) - 2^(-n) < 2^(-m) #

And as #2^(-x)# is strictly decreasing and #m > N > log_2(1/epsilon)#

#2^(-m) - 2^(-n) < 2^(-m) < 2^(-N) < 2^(-log_2(1/epsilon)#

But:

#2^(-log_2(1/epsilon) )= 2^(log_2(epsilon)) = epsilon#

So:

#|2^(-m) - 2^(-n)| < epsilon#

Q.E.D.