Value of #(log(x+h)-logx)/h# when #h->0#?

1 Answer
Oct 1, 2017

# lim_(h rarr 0) (ln(x+h)-lnx)/h = 1/x#

Explanation:

We seek:

# L = lim_(h rarr 0) (ln(x+h)-lnx)/h#

Method 1:

# L = lim_(h rarr 0) (ln((x+h)/x))/h#
# \ \ = lim_(h rarr 0) ln(1+h/x)/h#

Now, we can perform a substitution:

Let #z=h/x# and we note that #z rarr 0# as #h rarr 0#

Then, we have:

# L = lim_(z rarr 0) ln(1+z)/(zx)#
# \ \ = lim_(z rarr 0) 1/x 1/x ln(1+z)#
# \ \ = 1/x \ lim_(z rarr 0) 1/z ln(1+z)#
# \ \ = 1/x \ lim_(z rarr 0) ln(1+z)^(1/z)#

Du to the monotonicity of the logarithmic function, we can change the limit to:

# \ \ = 1/x \ ln {lim_(z rarr 0) (1+z)^(1/z)}#

And we note that this is a standard limit , established by Leonhard Euler :

# lim_(z rarr 0) (1+z)^(1/z) = e #

Giving us:

# L = 1/x \ ln e#
# \ \ = 1/x #

Method 2:

If we compare the sought limit:

# L = lim_(h rarr 0) (ln(x+h)-lnx)/h#

With the limit definition of the derivative:

# f'(x) = lim_(h rarr 0) (f(x+h)-f(x))/h #

Then, we note that #L = d/dx(lnx)#, leading to the same result as above.