Value of (log(x+h)-logx)/h when h->0?
1 Answer
lim_(h rarr 0) (ln(x+h)-lnx)/h = 1/x
Explanation:
We seek:
L = lim_(h rarr 0) (ln(x+h)-lnx)/h
Method 1:
L = lim_(h rarr 0) (ln((x+h)/x))/h
\ \ = lim_(h rarr 0) ln(1+h/x)/h
Now, we can perform a substitution:
Let
z=h/x and we note thatz rarr 0 ash rarr 0
Then, we have:
L = lim_(z rarr 0) ln(1+z)/(zx)
\ \ = lim_(z rarr 0) 1/x 1/x ln(1+z)
\ \ = 1/x \ lim_(z rarr 0) 1/z ln(1+z)
\ \ = 1/x \ lim_(z rarr 0) ln(1+z)^(1/z)
Du to the monotonicity of the logarithmic function, we can change the limit to:
\ \ = 1/x \ ln {lim_(z rarr 0) (1+z)^(1/z)}
And we note that this is a standard limit , established by Leonhard Euler :
lim_(z rarr 0) (1+z)^(1/z) = e
Giving us:
L = 1/x \ ln e
\ \ = 1/x
Method 2:
If we compare the sought limit:
L = lim_(h rarr 0) (ln(x+h)-lnx)/h
With the limit definition of the derivative:
f'(x) = lim_(h rarr 0) (f(x+h)-f(x))/h
Then, we note that