Completing the parallelogram of vec A and vec B→Aand→B , the
diagonal represents represents resultant of two vectors
vecA and vecB→Aand→B. The angle between vecA→Aand parallal
vecB→B is 180-45=135^0180−45=1350 By applying cosine law
we get magnitude of |vecA+vecB|^2∣∣∣→A+→B∣∣∣2
= 3.7^2+5.9^2-2*3.7*5.9*cos135~~79.37=3.72+5.92−2⋅3.7⋅5.9⋅cos135≈79.37 or
|vecA+vecB|= 8.91∣∣∣→A+→B∣∣∣=8.91 units . Let the resultant vector.
|vecA+vecB|∣∣∣→A+→B∣∣∣ makes an angle thetaθ with vecA→A.
By sine law 5.9/sintheta=8.91/sin135 5.9sinθ=8.91sin135 or
sin theta = (5.9*sin135)/8.91~~0.4682sinθ=5.9⋅sin1358.91≈0.4682
or theta= sin^-1(0.4682)~~27.92^0θ=sin−1(0.4682)≈27.920 from vecA→A.
Magnitude of (vecA+vecB)(→A+→B) is 8.918.91 units at an angle
of 27.92^027.920 from vecA→A [Ans]