Verify this is an identity? cos2x+cos2y/sinx+cosy=2cosy-2sinx

1 Answer
Apr 3, 2018

Please see below.

Explanation:

We know that

color(red)((1)cos2theta=2cos^2theta-1,or(1)cos2θ=2cos2θ1,or

color(red)((2)cos2theta=1-2sin^2theta(2)cos2θ=12sin2θ

We have ,

(cos2x+cos2y)/(sinx+cosy)=2cosy-2sinxcos2x+cos2ysinx+cosy=2cosy2sinx

LHS=(cos2x+cos2y)/(sinx+cosy)...to Apply (1)and (2)

=(1-2sin^2x+2cos^2y-1)/(sinx+cosy)

=(2cos^2y-2sin^2x)/(sinx+cosy)

=(2(cos^2y-sin^2x))/(sinx+cosy)

=(2(cosy+sinx)(cosy-sinx))/((cosy+sinx))

=2(cosy-sinx)

=2cosy-2sinx

=RHS