What are possible value(s) of x and y if y^2=x^2-64y2=x2−64 and 3y=x+8?3y=x+8??
2 Answers
#(x, y) = (-8, 0), (10, 6)
Explanation:
Explanation:
y^2=x^2-48to(1)y2=x2−48→(1)
3y=x+8to(2)3y=x+8→(2)
"from equation "(2)" we can express x in terms of y"from equation (2) we can express x in terms of y
rArrx=3y-8to(3)⇒x=3y−8→(3)
"substitute "x=3y-8" in equation "(1)substitute x=3y−8 in equation (1)
rArry^2=(3y-8)^2-64larrcolor(blue)"expand "(3y-8)^2⇒y2=(3y−8)2−64←expand (3y−8)2
rArry^2=9y^2-48ycancel(+64)cancel(-64)
rArr8y^2-48y=0larrcolor(blue)"factorise"
8y(y-6)=0
"equate each factor to zero and solve for y"
8y=0rArry=0
y-6=0rArry=6
"substitute these values into equation "(3)
y=0rArrx=-8rArr(-8,0)
y=6rArrx=18-8=10rArr(10,6)
graph{(y^2-x^2+64)(y-1/3x-8/3)((x+8)^2+(y-0)^2-0.04)((x-10)^2+(y-6)^2-0.04)=0 [-20, 20, -10, 10]}