What are the first and second derivatives of #f(x)=e^(2x)(lnx) #? Calculus Differentiating Logarithmic Functions Differentiating Logarithmic Functions with Base e 1 Answer Binayaka C. Aug 8, 2018 #f^'(x)= e^(2x)( 1/x+ 2(lnx))# #f^''(x)= (e^(2x)(2x-1))/ x^2# #+ 2 e^(2x) ( 1/x+ 2 *(lnx))# Explanation: #f(x)= e^(2x)(ln x)# #f^'(x)= e^(2x)* 1/x+ 2e^(2x)*(lnx)# #f^'(x)= e^(2x)( 1/x+ 2(lnx))# #f^''(x)= (x *2e^(2x)-e^(2x)*1)/ x^2# #+ 2(e^(2x) * 1/x+ 2e^(2x) *(lnx))# #f^''(x)= (e^(2x)(2x-1))/ x^2# #+ 2 e^(2x) ( 1/x+ 2 *(lnx))# [Ans] Answer link Related questions What is the derivative of #f(x)=ln(g(x))# ? What is the derivative of #f(x)=ln(x^2+x)# ? What is the derivative of #f(x)=ln(e^x+3)# ? What is the derivative of #f(x)=x*ln(x)# ? What is the derivative of #f(x)=e^(4x)*ln(1-x)# ? What is the derivative of #f(x)=ln(x)/x# ? What is the derivative of #f(x)=ln(cos(x))# ? What is the derivative of #f(x)=ln(tan(x))# ? What is the derivative of #f(x)=sqrt(1+ln(x)# ? What is the derivative of #f(x)=(ln(x))^2# ? See all questions in Differentiating Logarithmic Functions with Base e Impact of this question 2791 views around the world You can reuse this answer Creative Commons License