What are the possible integral zeros of P(n)=n^3-3n^2-10n+24P(n)=n33n210n+24?

1 Answer
Jan 2, 2017

-4, 2 and 34,2and3.

Explanation:

P(2)=0. So, n-2n2 is a factor. Now,

P(n) = (n-2)(n^2+kn-12)).P(n)=(n2)(n2+kn12)).

Comparing coefficient of n^2=k-2n2=k2 with -33, k = -1.

So, P(n)=(n-2)(n^2-n-12)=(4-2)(n+4)(n-3)P(n)=(n2)(n2n12)=(42)(n+4)(n3).

And so, the other two zeros are -4 and 34and3.

.