What do exponential growth and decay have in common?

1 Answer
Mar 30, 2015

They both work with the same equation: N=B*g^t
Where
N= new situation
B= begin
g= growth factor
t= time

If the growth-factor is greater than 1, then we have a growth.
If it is less than 1 we call it decay.
(if g=1 nothing happens, a stable situation)

Examples:
(1) A population of squirrels, starting at 100, grows by 10% every year. Then g=1.10 and the equation becomes: N=100*1.10^t with t in years.
(2) A radio-active material with original activity of 100, decays by 10% per day. Then g=0.90 (because after a day only 90% will be left) and the equation will be: N=100*0.90^t with t in days.