What does 2sin(arccos(3))+csc(arcsin(5))2sin(arccos(3))+csc(arcsin(5)) equal?
1 Answer
Undefined if dealing with Real
However, if we use Complex
2 sin(arccos(3)) + csc(arcsin(5)) = 4 sqrt(2) i + 1/52sin(arccos(3))+csc(arcsin(5))=4√2i+15
Explanation:
If we are talking about Real valued trig functions of Real values, then both
However, it is possible to define
cos(z) = (e^(iz)+e^(-iz))/2cos(z)=eiz+e−iz2
sin(z) = (e^(iz)-e^(-iz))/(2i)sin(z)=eiz−e−iz2i
If
These definitions can be used to calculate
We find:
2 sin(arccos(3)) = 2 sqrt(1-3^2) = 2 sqrt(-8) = 4sqrt(2) i2sin(arccos(3))=2√1−32=2√−8=4√2i
csc(arcsin(5)) = 1/sin(arcsin(5)) = 1/5csc(arcsin(5))=1sin(arcsin(5))=15
So:
2 sin(arccos(3)) + csc(arcsin(5)) = 4 sqrt(2) i + 1/52sin(arccos(3))+csc(arcsin(5))=4√2i+15