What does arcsin(sin ((-pi)/6)) arcsin(sin(π6)) equal?

1 Answer
Jul 25, 2018

arc sin(sin(-pi/6))=-pi/6arcsin(sin(π6))=π6

Explanation:

We know that ,

color(red)((1)arc sin (sintheta)=theta)(1)arcsin(sinθ)=θ , color(red)(theta in[-pi/2,pi/2])θ[π2,π2]

Let ,

X=arc sin(sin(-pi/6))....tocolor(red)(-pi/6 in [-pi/2,pi/2])

=>X=-pi/6.......tocolor(red)(Apply(1)

OR

X=arc sin(sin(-pi/6))

=>X=arcsin(-sin(pi/6))to[becausesin(-theta)=-sintheta]

=>X=-arc sin(sin(pi/6))to[becausearcsin(-x)=-arcsinx]

X=-pi/6.......tocolor(red)(Apply(1)