What does #cos(arctan(-1))+sin(arc csc(-1))# equal?

1 Answer
Mar 10, 2016

#cos(arctan(-1))+sin(arc csc(-1))=-1+-1/sqrt2#

Explanation:

#cos(arctan(-1))# means #cosalpha# of an angle #alpha#, where #tanalpha=-1#. #tanalpha=-1# for #alpha=(3pi)/4# or #alpha=(-pi)/4#.

#cos((3pi)/4)=-1/sqrt2# and #cos((-pi)/4)=1/sqrt2#. Hence #cos(arc tan(-1))=+-1/sqrt2#

#sin(arc csc(-1))# means #sinbeta# of an angle #beta#, where #cscbeta=-1#.

#cscbeta=-1# for #beta=(3pi)/2# and #sin((3pi)/2)=-1#. Hence #sin(arc csc(-1))=-1#

Hence, #cos(arctan(-1))+sin(arc csc(-1))=-1+-1/sqrt2#