What does cos(arctan(2))-sin(arcsec(5)) equal?

1 Answer
May 19, 2016

cos(arctan2)-sin(arcsec5) is +-1.427 or +-0.5326

Explanation:

cos(arctan2)-sin(arcsec5)

= cosalpha-sinbeta, where

tanalpha=2 and secbeta=5

Now, cosalpha=i/secalpha=1/sqrt(1+tan^2alpha)

= 1/sqrt(1+2^2)=+-1/sqrt5

and sinbeta=sqrt(1-cos^2beta)=sqrt(1-1/sec^2beta)

= sqrt(1-1/5^2)=sqrt(1-1/25)=sqrt(24/25)=+-2/5sqrt6

Hence cosalpha-sinbeta=(+-1/sqrt5)-(+-2/5sqrt6)

= (+-0.4472)-(+-0.9798)

Taking different sign combinations can take four different values of cosalpha-sinbeta, which are +-1.427 or +-0.5326