What does cos(arctan(3))+sin(arctan(4))cos(arctan(3))+sin(arctan(4)) equal?

1 Answer
Mar 4, 2018

cos(arctan(3))+sin(arctan(4))=1/sqrt(10)+4/sqrt(17)cos(arctan(3))+sin(arctan(4))=110+417

Explanation:

Let tan^-1(3)=xtan1(3)=x

then rarrtanx=3tanx=3

rarrsecx=sqrt(1+tan^2x)=sqrt(1+3^2)=sqrt(10)secx=1+tan2x=1+32=10

rarrcosx=1/sqrt(10)cosx=110

rarrx=cos^(-1)(1/sqrt(10))=tan^(-1)(3)x=cos1(110)=tan1(3)

Also, let tan^(-1)(4)=ytan1(4)=y

then rarrtany=4tany=4

rarrcoty=1/4coty=14

rarrcscy=sqrt(1+cot^2y)=sqrt(1+(1/4)^2)=sqrt(17)/4cscy=1+cot2y=1+(14)2=174

rarrsiny=4/sqrt(17)siny=417

rarry=sin^(-1)(4/sqrt(17))=tan^(-1)4y=sin1(417)=tan14

Now, rarrcos(tan^(-1)(3))+sin(tan^(-1)tan(4))cos(tan1(3))+sin(tan1tan(4))

rarrcos(cos^-1(1/sqrt(10)))+sin(sin^(-1)(4/sqrt(17)))=1/sqrt(10)+4/sqrt(17)cos(cos1(110))+sin(sin1(417))=110+417