Let tan^-1(3)=xtan−1(3)=x
then rarrtanx=3→tanx=3
rarrsecx=sqrt(1+tan^2x)=sqrt(1+3^2)=sqrt(10)→secx=√1+tan2x=√1+32=√10
rarrcosx=1/sqrt(10)→cosx=1√10
rarrx=cos^(-1)(1/sqrt(10))=tan^(-1)(3)→x=cos−1(1√10)=tan−1(3)
Also, let tan^(-1)(4)=ytan−1(4)=y
then rarrtany=4→tany=4
rarrcoty=1/4→coty=14
rarrcscy=sqrt(1+cot^2y)=sqrt(1+(1/4)^2)=sqrt(17)/4→cscy=√1+cot2y=√1+(14)2=√174
rarrsiny=4/sqrt(17)→siny=4√17
rarry=sin^(-1)(4/sqrt(17))=tan^(-1)4→y=sin−1(4√17)=tan−14
Now, rarrcos(tan^(-1)(3))+sin(tan^(-1)tan(4))→cos(tan−1(3))+sin(tan−1tan(4))
rarrcos(cos^-1(1/sqrt(10)))+sin(sin^(-1)(4/sqrt(17)))=1/sqrt(10)+4/sqrt(17)→cos(cos−1(1√10))+sin(sin−1(4√17))=1√10+4√17