What does -sin(arccos(2))+tan("arccsc"(4)) equal?

1 Answer
Jun 14, 2018

-sin(arccos(2))+tan("arccsc"(4))=1/15sqrt15-sqrt3i

Explanation:

We use the following identities to evaluate the above expression:

sinx=sqrt(1-cos^2x)

cotx=sqrt(csc^2x-1)

tanx=1/cotx

So

-sin(arccos(2))+tan("arccsc"(4))

=-sqrt(1-cos^2(arccos2))+1/sqrt(csc^2("arccsc"4)-1)

=-sqrt(1-4)+1/sqrt(16-1)

-sqrt(-3)+1/sqrt15

=1/15sqrt15-sqrt3i