What does #sin(arccos(3))+csc(arc cot(4))# equal?
1 Answer
Explanation:
If
However, inspired by Euler's formula
#sin z = (e^(iz) - e^(-iz))/(2i)#
#cos z = (e^(iz) + e^(-iz))/2#
With these definitions, note that
Suppose
Let
#(t+1/t)/2 = cos z = a#
Hence:
#t+1/t = 2a#
Hence:
#t^2-2at+1 = 0#
Solving using the quadratic formula, we get:
#e^(iz) = t = (2a+-sqrt(4a^2-4))/2 = a+-sqrt(a^2-1)#
So:
#iz = ln(a+-sqrt(a^2-1))#
Hence:
#z = -i ln(a+-sqrt(a^2-1)) = +-i ln(a+sqrt(a^2-1))#
It is reasonable that the definition of
Hence:
#arccos(3) = i ln(3+sqrt(8)) = i ln(3+2sqrt(2))#
Then:
#sin(arccos(3))#
#= (e^(-ln(3+2sqrt(2)))-e^(ln(3+2sqrt(2))))/(2i)#
#=1/(2i)(1/(3+2sqrt(2)) - (3+2sqrt(2)))#
#=i/2((3+2sqrt(2))-(3-2sqrt(2)))#
#=color(blue)(2sqrt(2)i)#
On the other hand,
Consider a right angled triangle with sides
Let
Then
and
So:
#csc(arc cot(4)) = color(blue)(sqrt(17))#