What does sin(arccos(3))+csc(arc cot(4)) equal?
1 Answer
Explanation:
If
However, inspired by Euler's formula
sin z = (e^(iz) - e^(-iz))/(2i)
cos z = (e^(iz) + e^(-iz))/2
With these definitions, note that
Suppose
Let
(t+1/t)/2 = cos z = a
Hence:
t+1/t = 2a
Hence:
t^2-2at+1 = 0
Solving using the quadratic formula, we get:
e^(iz) = t = (2a+-sqrt(4a^2-4))/2 = a+-sqrt(a^2-1)
So:
iz = ln(a+-sqrt(a^2-1))
Hence:
z = -i ln(a+-sqrt(a^2-1)) = +-i ln(a+sqrt(a^2-1))
It is reasonable that the definition of
Hence:
arccos(3) = i ln(3+sqrt(8)) = i ln(3+2sqrt(2))
Then:
sin(arccos(3))
= (e^(-ln(3+2sqrt(2)))-e^(ln(3+2sqrt(2))))/(2i)
=1/(2i)(1/(3+2sqrt(2)) - (3+2sqrt(2)))
=i/2((3+2sqrt(2))-(3-2sqrt(2)))
=color(blue)(2sqrt(2)i)
On the other hand,
Consider a right angled triangle with sides
Let
Then
and
So:
csc(arc cot(4)) = color(blue)(sqrt(17))